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Preliminary – Likelihood-based Generative Models
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P(z) θ Pθ(x) Pdata(x)

● Pdata(x): probability distribution of the data

● Pθ(x): approximate probability distribution of the data

● P(z): probability distribution of the latent variable,

usually a Gaussian distribution



Preliminary – Jacobian Matrix

● f : Rn → Rm

● Then the Jacobian matrix of f, denoted Jf ∈ Rm×n, is defined as:
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Preliminary – Jacobian Matrix

● According to the inverse function theorem, the matrix inverse of the Jacobian matrix 

of an invertible function f : Rn → Rn is the Jacobian matrix of the inverse function.

● That is Jf Jg = I, where g(·) = f-1(·).
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Preliminary – Determinant

● The determinant is a scalar-valued function of the entries of a square matrix. The 

determinant of a matrix A is commonly denoted det(A), det A, or |A|.

7Area = Absolute value of the determinant



Preliminary – Change of Variables Theorem (in PDF)

● z is a one-dimensional variable.

● 𝜋(𝑧) is a simple distribution, like a

standard normal distribution.

● x = f(z) is a mapping.

● p(x) is the probability distribution of x.

● If we know the probability density of

z’, 𝜋(𝑧′), and we know x’ = f(z’), what

can we tell about p(x’)?
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Preliminary – Change of Variables Theorem (in PDF)

EXAMPLE:

● 𝜋(𝑧) is a uniform distribution defined

within 0 to 1, and zero probability

otherwise.

● x = f(z) = 2z + 1 is a mapping.

● p(x) is the probability distribution of x.

● Since both 𝜋(𝑧) and p(x) are

probability density functions, their

integrals should be same and equal

to 1.
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Preliminary – Change of Variables Theorem (in PDF)

General case (one-dimensional):

● Similarly, the blue region and the

green region should have the

same area.

● Notably, here we need dz/dx, so

it implicitly requires that x = f(z)

is an invertible mapping such

that z = f-1(x).
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Preliminary – Change of Variables Theorem (in PDF)

General case (two-dimensional):

● In this case, the probability

density becomes the axis

perpendicular to the plane.

● Therefore, in this case, the

volume of the blue polyhedron

should be same as the volume

of the green polyhedron.
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Area of green region Area of
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Preliminary – Change of Variables Theorem (in PDF)
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Discrete Normalizing Flows (DNF)
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Limitation:

• G must be invertible.

• So, G has constrained

expressiveness.

We can have more!

Why not have infinitely many?



Continuous Normalizing Flows (CNF)

● Infinite number of intermediate probability distributions is referred as a probability

density path. Mathematically, we have , where .

● A time dependent vector field defines the transformation between any consecutive

distributions: 𝑥𝑡+ ∆𝑡 = 𝑥𝑡 + 𝑣𝑡 𝑥𝑡 ∗ ∆𝑡. When ∆𝑡 → 0, we have
𝑑𝑥

𝑑𝑡
= 𝑣𝑡(𝑥).

● A flow defines accumulative changes from 𝑥0 to 𝑥𝑡 through the

solution of an ordinary differential equation (ODE) initial value problem:

where .
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∅𝑡2(𝑥)

𝑝0(𝑥) 𝑝𝑡1(𝑥) 𝑝𝑡2(𝑥) 𝑝1(𝑥)

…𝑣𝑡1(𝑥) 𝑣𝑡2(𝑥) 𝑣1(𝑥)

∅𝑡1(𝑥)

∅1(𝑥)

- We use subscript to denote the time parameter, e.g., pt(x), to align with the notations in the original paper.



Continuous Normalizing Flows (CNF)

● A CNF is used to reshape a simple prior density p0 (e.g., pure noise) to a more 

complicated one, p1, via the push-forward equation: , where the push-forward

operator ∗ is defined by .

● A vector field 𝑣𝑡 is said to generate a probability density path 𝑣𝑡 if its flow ∅𝑡 satisfies the

above equations. One method of testing if a vector field 𝑣𝑡 generates a probability path pt 

is the continuity equation: , where .

15

∅𝑡2(𝑥)

𝑝0(𝑥) 𝑝𝑡1(𝑥) 𝑝𝑡2(𝑥) 𝑝1(𝑥)

…𝑣𝑡1(𝑥) 𝑣𝑡2(𝑥) 𝑣1(𝑥)

∅𝑡1(𝑥)

∅1(𝑥)

- We use subscript to denote the time parameter, e.g., pt(x), to align with the notations in the original paper.

• Invertibility is guaranteed by the symmetricity of

ODE. Its inverse flow is defined by the

reverse vector field .

• The existence and uniqueness of the solution of

the ODE is guaranteed by Picard-Lindelöf 

Theorem (Cauchy-Lipschitz Theorem).



Flow Matching

● Let 𝑥1 denote a random variable distributed according to some unknown data 

distribution 𝑞(𝑥1). Assume we only have access to data samples from 𝑞(𝑥1) but 

have no access to the density function itself. 

● Furthermore, let 𝑝𝑡 be a probability path such that 𝑝0 = 𝑝 is a simple distribution, 

e.g., the standard normal distribution 𝑝(𝑥)  =  𝑁 (𝑥|0, 𝐼), and let 𝑝1 be approximately 

equal in distribution to 𝑞.

● Given a target probability density path 𝑝𝑡(𝑥) and a corresponding vector field 𝑢𝑡(𝑥), 

which generates 𝑝𝑡(𝑥), the Flow Matching (FM) objective is defined as:

where 𝜃 denotes the learnable parameters of the CNF vector field 𝑣𝑡, 𝑡 ∼  𝑈 [0, 1] 

(uniform distribution), and 𝑥 ∼  𝑝𝑡(𝑥).
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Flow Matching

● A simple way to construct a target probability path is via a mixture of simpler 

probability paths: 

○ Given a particular data sample 𝑥1, we denote by 𝑝𝑡(𝑥|𝑥1) a conditional 

probability path such that it satisfies 𝑝0(𝑥|𝑥1)  =  𝑝(𝑥) at time t = 0

○ Design 𝑝1(𝑥|𝑥1) at t = 1 to be a distribution concentrated around 𝑥 =  𝑥1, e.g., 

𝑝1(𝑥|𝑥1)  =  𝑁 (𝑥|𝑥1, 𝜎2𝐼), a normal distribution with 𝑥1 mean and a sufficiently 

small standard deviation 𝜎 > 0.
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• No prior knowledge for what an appropriate 𝑝𝑡 and 𝑢𝑡 are.

• Don’t have access to a closed form 𝑢𝑡 that generates the 

desired 𝑝𝑡.

* Can be proved with the continuity equation, see appendix of the paper for more details.

*



Flow Matching

● Fortunately and surprisingly, we can directly use vector fields 𝑢𝑡(𝑥|𝑥1) that generate 

conditional probability paths 𝑝𝑡(𝑥|𝑥1) instead of the marginal vector field 𝑢𝑡 𝑥 .

● Consider the Conditional Flow Matching (CFM) objective:

where 𝑡 ∼  𝑈 [0, 1], 𝑥1 ∼ 𝑞(𝑥) and 𝑥 ∼  𝑝𝑡(𝑥|𝑥1).

● Unlike the FM objective, the CFM objective allows us to easily sample unbiased 

estimates as long as we can efficiently sample from 𝑝𝑡(𝑥|𝑥1) and compute 𝑢𝑡(𝑥|𝑥1), 

both of which can be easily done as they are defined on a per-sample basis.

● The FM and CFM objectives have identical gradients w.r.t. 𝜃.*
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• Calculating 𝑢𝑡 𝑥 involves intractable integration.

* Can be proved easily, see appendix of the paper for more details.



Flow Matching

● The Conditional Flow Matching objective works with any choice of conditional 

probability path and conditional vector fields.

● This paper constructs 𝑝𝑡(𝑥|𝑥1) and 𝑢𝑡(𝑥|𝑥1) with Gaussian conditional probability.

set 𝜇0(𝑥1) = 0 and 𝜎0(𝑥1) = 1 and set 𝜇1(𝑥1) = 𝑥1 and 𝜎1(𝑥1) = 𝜎𝑚𝑖𝑛.

● Construct the flow as:

● The unique vector field that defines has the form (prime denotes derivatives):

19
* See appendix of the paper for more details.

*

→



Optimal Transport conditional Vector Fields

● Define the mean and the std to simply change linearly in time:

● Then we can derive that this path is generated by the vector field:

● The corresponding conditional flow is derived as:

● The CFM loss becomes:
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Alternative Implementation of Flow Matching

● We can optimize our model based on the loss function derived on the previous slide,

or directly employ the vanilla CFM loss as follows:

● 𝑞(𝑥1) can be approximated by the training dataset.

● 𝑡 can be randomly sampled from 0 to 1 until the training process converges.

● For 𝑝𝑡(𝑥|𝑥1), we have:

● Therefore, we can sample 𝑥 as: 𝜇𝑡 𝑥1 + 𝜎𝑡 𝑥1 ∗ 𝜖, where 𝜖 ~ 𝒩(0, 𝐼).

● Then we can calculate the conditional vector field through:

● And thus train our model based on the above regression loss.
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Discussion and Conclusions

● Since we can have different designs for the probability path, flow matching can

theoretically unify the score-matching model (Variance Exploding Diffusion) and

diffusion denoising probabilistic model (Variance Preserving Diffusion).

● This is similar to the purpose of diffusion models with stochastic differential

equations paper.

● Diffusion models use the evidence lower bound (ELBO) as a proxy objective to

optimize the model, whereas flow matching directly uses the log likelihood.
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Thanks for your attention!
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